Treballem amb simulació avançada per millorar la seguretat nuclear

Descobreix com la Càtedra UNESCO de Mètodes Numèrics lidera la innovació de frontera al Sud Global

Notícies

Enrere

EN-TRACK: Energy Efficiency Performance-Tracking Platform for Benchmarking Savings and Investments in Buildings

gen. 10, 2021

One of the main challenges of increasing energy efficiency investments is the lack of statistical data on the actual energy and costs savings which are achieved through them. Data is still hard to access because it is decentralized and in different formats. Consequently, only a small part of it can be used to produce reliable empirical evidence on the performance of the energy efficiency investment.

EN-TRACK will meet this challenge by enabling an interoperable ecosystem of data and tools supporting building refurbishment decision making, putting it into practice with the financial sector. The project expects to attract investments in energy-efficient refurbishment in the European building stock. This will make a significant contribution to the reduction of CO2 emissions.

EN-TRACK was launched in November 2020 and is supported by the EU Horizon2020 with a 1.393 million € funding. The project will run for 36 months, ending in October 2023, and it consists of a data sharing platform to collect the increasing amount of building data which is currently dispersed and hard to access.

EN-TRACK will directly involve over 35 financial institutions and 100 key stakeholders. The project covers a buildings stock investment capacity of over 442M€ and triggers over 23M€ in energy efficiency investments. It also expects to be achieving annual savings of over 38GWh/yr and 17ktCO2eq/yr by the end of the project.

The EN-TRACK data process

The basic premise of EN-TRACK is that most of the information needed to make financing of energy efficiency a mainstream activity already exists. The problem is that it is inaccessible, poorly organised or often simply unlocated. The process is designed to make data input simpler, more attractive and cost-effective make the outputs more valuable by making them compatible with emerging market leader applications such as DEEP, eQuad and EnerInvest.

En-track data processes

Notícies relacionades

L’Aula CIMNE-ETSII utilitza IA i dades satel·litàries per monitorar la qualitat de l’aigua
L’Aula CIMNE-ETSII utilitza IA i dades satel·litàries per monitorar la qualitat de l’aigua

Experts de l'Aula CIMNE-UPM ETSII han avaluat l’eficàcia de l’aprenentatge automàtic (Machine Learning, ML) i de la imatgeria per satèl·lit per avaluar la qualitat de l’aigua en entorns d’aigües interiors. En un estudi recent, la Laura Cáceres, el Dr. Jorge Rodríguez...

CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial
CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial

El Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) ha engegat DAMSHAI (Dam Structural Health Monitoring and Safety Assessment with an AI Agent), un projecte de recerca de tres anys que explorarà l’aplicació de la intel·ligència artificial a l’avaluació...

La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO
La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO

  El professor Michael Ortiz va presentar el passat 28 d’octubre al Palau Robert de Barcelona el seminari “Science Meets Data: Scientific Computing in the Age of Artificial Intelligence”, amb motiu de la seva presa de possessió com a titular de la Càtedra UNESCO...

Etiquetes

Compartiu: